
KK6MK Replacement for F1EHN EME Board

This PIC-based board, with added features, can be used in place of the original interface board designed by F1EHN for his system

by Rex Allers, KK6MK

Introduction

Several years ago, F1EHN, Jean-Jacques Maintoux, in France, designed a superb system for controlling antennas used to make Earth-Moon-Earth (EME) amateur radio contacts. This system is one of the most widely used by hams who make EME contacts. The heart of the system is an excellent PC program that runs on Microsoft Windows operating systems. The program tracks the position of the moon relative to the operating location. It can be used to steer an antenna and keep it pointed at the moon. The program also performs several other functions useful for EME contacts. A hardware interface board connects to one of the PC's serial COM ports and communicates with the program to complete the system. F1EHN makes this program available to the amateur community at no cost.

The board, as originally designed in the F1EHN system, performs the following functions:

· Communicate with the PC COM port using an HD-6402 UART

· Read 16-bit values for the antenna's Azimuth and Elevation.

· Control antenna position by driving azimuth and elevation motors using four relays for CW, CCW, UP and DN.

· Read an 8-bit value representing the signal level.

· Illuminate LEDs indicating TX or RX period is active.

· Blink an LED to indicate the board is talking correctly with the PC.

Start of a new design

I (KK6MK) have never actually worked EME on any band. My involvement began because Jeffrey Pawlan, WA6KBL, was putting together a new EME installation for 1296 MHz. For this system, Jeffrey was planning to use the F1EHN software and hardware, but he wanted to use US Digital absolute encoders for reading the antenna position. These encoders communicate over an RS-485 interface. They have the advantage that the shaft angle can be programmed to define the read-out value at any position, and once this orientation is set, the encoder retains this calibration even when powered down. With most digital encoder systems, the zero point must be reprogrammed each time the system is restarted. The US Digital absolute encoders are also very accurate. They are guaranteed to 12-bits of accuracy, which is about 0.09 degrees, but they provide 16-bits of output and can provide values to 0.01 degrees. They seem to be usable well beyond their 12-bit specification.

One disadvantage with these encoders is that they are rather expensive. Each encoder is over $200, however, anyone who is building a system for EME communication must invest lots of time and money building something that will work dependably. The accuracy that the US Digital encoders provide and the fact that they retain absolute calibration while powered down, is enough to justify the cost of these encoders for many people.

I got involved because I have done some PIC programming. I looked at the design of the F1EHN board and the inputs it required from encoders. After studying the documentation for the encoders, it appeared that a PIC could easily do what was needed. A board was designed that used a PIC microprocessor. It could talk to the encoders using an RS-485 interface. It provided two 16-bit outputs for AZ and EL position to the F1EHN board. It also had an LCD display that showed the values of AZ and EL position in degrees.

Having done this much, and looking at the capabilities of various PIC microprocessors, it seemed that it should be possible to add an RS-232 interface and have the PIC board completely replace the existing F1EHN interface board. This seemed to have a couple of advantages. One is that the F1EHN design was done years ago and some of the parts are becoming difficult to obtain. Another advantage is that by using the PIC, it should be possible to do a design that requires fewer parts.

Design of new board

Motivation to work on a new design came through Tay Howard, W6HD. Tay wanted to add these US Digital encoders to his system and was anxious for me to complete the encoder interface that I had started with WA6KBL. In a few weeks, we had the bugs sorted out so Tay could use these encoders with his existing F1EHN board.

I mentioned to Tay that I thought I could expand the design to replace all of the functionality on the F1EHN board and incorporate the interface to talk to the US Digital encoders. Tay thought this was worth undertaking, partially because parts for the F1EHN board were becoming harder to obtain.

There was another reason to design this replacement. Jean-Jacques had updated his program to add a new feature. He gave an option to set a new mode that could be used to give analog speed control of the antenna positioning motors rather than the simple on/off relay control. This could be done with the original board design but required additional hardware external to the board to generate the analog signals. It occurred to me that in a new design this analog speed output could be coupled more tightly into the design and be done with less hardware.

Goals

A new design was undertaken and the following goals were set:

· Support the existing features of the original F1EHN board design

· Add an RS-485 interface to read US Digital encoders

· Allow optional 16-bit parallel encoder input compatible with the original design

· Support the signal level input

· Display AZ and EL positions on the controller

· Integrate analog speed output for the new modes of the PC program

· Reduce the hardware required in the design

· Allow configuration of the US Digital encoders through this hardware

At this point, a prototype design has been completed that achieves most of these goals. The last goal of being able to configure the US Digital encoders through the new board has not been achieved. To configure the encoders and set the base position now requires the SEI software available from US Digital and one of the RS-232 to RS-485 adapters from US Digital.

The new board

A Printed Circuit Board for this new design has not been laid out at this time, but the schematic is complete and can be found in the zip file that contains this document. The main schematic is in the file ehnemu.pdf. Along with this is a second schematic file, parallelin.pdf. This second page of schematic is used only if it is desired to use 16-bit parallel input encoders as in the original F1EHN design. To use the US Digital encoders this second page of schematics is not required.

The new board has two Burr-Brown (now TI) DAC7611 chips to generate an analog voltage if the analog speed control is to be used. These chips support 12-bit digital input. In this implementation the four low-order bits are always zero and only the eight high-order bits are set. This means the output of these chips can range from zero to 4.08 volts. One DAC gives a voltage for Azimuth speed and the other for Elevation speed. The outputs must be connected to some kind of drive circuitry that will generate the voltages needed to drive the motors, proportional to these control signals. If motor speed control is not desired, the board can be built without these two chips.

In the schematic, the pin numbers on the connector for the PC RS232 connector do not reflect the pin numbers for the DB-15 or DB-25 connector that is needed to connect to the PC. Use the pin names and standard pin-out for RS232 to make the connections. The pin numbers for the RS485 connector are correct for an RJ-11 connector that is required.

In this design, the input for Signal Level is an analog input, where in the original F1EHN board Signal Level was an 8-bit digital input. I hope that this will work for most people who want to use this feature. If you would like to use this, and require a digital rather than analog input, contact me (Rex Allers, KK6MK, rexa@dnai.com). Modifying the firmware to allow using the unused PIC RD0-7 port for this would not be difficult.

The original board had two LEDs that represented the time interval signals RX and TX provided from the PC program. These reflect the established standards for EME operation that set periods on the order of 1-2 minutes between transmitting and receiving. In the new board these are not indicated by LEDs but are shown as TX or RX on the LCD display.

PIC Firmware

The firmware that drives the PIC 16F877 used in this board design has been tested, and so far seems to be compatible with the original F1EHN hardware design. In the zip file, this is provided as the file emulate.hex. This is a standard Intel load module that can be loaded into the chip with any programmer that can program the Microchip PIC 16F877. For all the testing, I have used the Microchip PicStart Plus programmer along with their free MPLAB development environment. The actual code was written in C using the Custom Computer Services (CCS) C compiler.

The details of the communication between the board and the F1EHN PC program is found in the file ehnbrd.txt in the zip file. This also defines some details of the speed control and the modes that are supported. In this version of the firmware, the second mode of speed control (mode 3) that implements bipolar analog values is not supported. The first mode of speed control (mode 2) that supports analog speed control combined with the standard relay control for direction is supported.

The firmware has some options that can be selected by defining parameters. These parameters are saved in the nonvolatile eeprom memory of the PIC chip. By default, the values in the eeprom are set so that the board has the same features as the original F1EHN board, except that using US Digital encoders is the default, not 16-bit parallel inputs. This means that speed control is disabled if the hex file is loaded without change and the eeprom memory values are not changed.

The main selections configurable through the values in the eeprom memory are to enable speed control, change the encoder input from US Digital to parallel input, and to enable crash stops for movement limits. There are a series of parameters that go along with these main selections. The details describing the values defined in the eeprom memory can be found in the file eevals.txt.

Options

When building the new board hardware there are several options. If the US Digital encoders are to be used, the two 75176 chips must be included. If the parallel encoder input is to be used, the four 74165 chips on the second page of schematic must be used. If the US digital encoders are not used, the 75176 chips can be left off. If parallel input will not be used, the second page of schematic need not be implemented.

If the analog speed control output is not to be used, the two DAC7611 chips can be left off.

The relay type can be any relay with a 5 volt coil and a drive current up to 100 mA. With different transistors used to drive the relays, higher current could be used, but the current into the transistor base from the PIC port can not exceed 25 mA. The schematic shows DPST relays but any desired switching contact configuration can be used.

For the RS232 interface, the Maxim 202 was used because it uses smaller capacitors than the standard MAX232. Any other equivalent chip could be substituted with appropriate circuit configuration and voltages.

Setting EEPROM values

To program the PIC microprocessor, the hex file must be loaded into the programmer. If you use the Microchip PicStart Plus programmer (as I did) the HEX file is first loaded into the Microchip MPLAB development environment. This is accomplished by selecting 'File -- Import -- Import to Memory' and selecting the input file emulate.hex. Once this is done, the code can be seen by opening 'Window -- Program Memory'. The EEPROM Memory values can be seen by opening 'Window -- EEPROM Memory'.

If you are using the PicStart Plus programmer, the chip can be programmed by selecting 'PICSTART Plus -- Enable Programmer'. Before starting to program the chip, verify that the following settings are indicated:

Oscillator

XT
WD Timer

OFF
PU Timer

OFF
Code Protect

OFF
Brown Out Detect
OFF
Low Voltage Program
Disabled
Data EE Protect

OFF
Flash Program Write
Enabled

Without any changes, this will work fine if you want to use the US Digital encoders, and do not want to use speed control via Drive Control mode 2 from the Emesetup for the PC Tracking program. If you want to use other options, the values to be programmed into the PIC's EEPROM memory must be changed. The possible values are described in the file eevals.txt. The most important is the Control Bit Flags byte at offset 02 in the EEPROM memory. Bits 0, 1, and 2 determine which features are selected in the firmware. To modify the EEPROM values, first view them with the MPLAB 'Window -- EEPROM Memory'. This window is shown in the following figure:

[image: image1.png]

To change any of these values, select 'Window -- Modify…'. The following dialog window should open.

[image: image2.png]=11x]
dess End Addess

oz = =
Dotar0pcads

G
P e Docima | Autoncroment

Memory Area:
Bata

Progiam
* EEPROM

Wiite

Bead

Close

Help

The above window is shown in the middle of modifying the Control Bit Flags byte at EEPROM address 02 to the value 05, which will set US Digital encoders and enable speed control. As can be seen, the input radix is set to hex, so values for address and data will be in hex. Most importantly, the memory area has been set to EEPROM so that we are modifying the EEPROM memory space. After entering the desired memory address and the value to be set in Data, click on the Write button to write this value into EEPROM memory. Afterward you should see the change reflected in the EEPROM window display. If any other changes are to be made, enter them in the modify window and click Write for each byte to be changed.

When all the changes are made you can then use the PICSTART Plus programmer window to write the image to the PIC chip. If you are using a different programmer, or if you want to save this version of the PIC load image, you can write the image to a file by selecting 'File -- Export -- Export Memory' and selecting a name for the .HEX file you are about to create. If you are using a different programmer, the file just created can be used as input for programming the 16F877 chip.

Speed control modes

Speed control is disabled in the default firmware and is not required to use the new board. To use the default configuration of the board, the PC program Drive Mode should be set to Normal Mode. While the speed control flag bit is disabled in the firmware, if the PC program is configured into one of the speed modes (mode 2 or mode 3), the PC program will fail with a communications error, and the board LCD will display ' Error Speed mode flag not enabled'.

If the speed control mode is desired, this version of the firmware only supports mode 2. Set the EEPROM Control Bit Flags byte Bit 2 to enable to enable the firmware. Set a definition for the PC program that uses Mode 2 in the emesetup program. Now the speed control will be in effect and the DACs will output control voltages in the range 0 to 4 volts. In this configuration, the firmware uses a series of values to set breakpoints for the voltage outputs. See the file ehnbrd.txt for an explanation of these values. The defaults for these values may be very poor for your motor drive.

A trick was used in the firmware. The speed mode 3 is not supported. If the PC program is put in mode 3 while speed mode is enabled in the firmware, the PC program will fail with a communications error, but the firmware will go into a test mode where it attempts to find values for the speed breakpoints. This will take a few minutes. First, the firmware will move the azimuth to 180 degrees and the elevation to 45 degrees. From this position it will move back and forth multiple times determining values for the start, slow, and kick EEPROM values. During the test, the LED will toggle as every iteration of the test completes. This should occur at a rate of one to several tens of seconds. At the end of this process, the results will be displayed on the LCD and the values will be written into the EEPROM memory locations.

Hopefully the values determined by this mode 3 test will be correct in your environment. If you think you can determine them better some other way, don't put the PC program into mode 3. If you find the determined values have a problem, read the chip's values back into the MPLAB IDE with PICSTART Plus and modify them, then write them back to the chip. If you want the speed adjustment values from the PC program to be passed to the DACs without breakpoint adjustments, set all the EEPROM speed parameters to zero.

For understanding the speed values, the high-order eight bits of the 12-bit DAC value are used to program the DAC. Each bit of the 12-bit value represents one millivolt. A value of 0xFFF into the DAC would be a voltage of 4.095 volts out. The maximum value that will be programmed into the DAC is 0xFF0 for a voltage of 4.08 volts. Each bit of the 8-bit control value represents about 0.016 volts.

The polarity of the speed voltage into the motors in mode 2 is determined by the setting of the relays. The same polarity wiring for the relays must be used for the non-speed Normal mode and for speed mode 2.

 Development test environment

Most of the development for this new board and the firmware was done without the benefit of an actual EME system and antenna positioner. Critical aspects of the Normal mode have been tested on W6HD's system. It is believed that all of the features will work, but please feel free to contact me (Rex, KK6MK, rexa@dnai.com) if you feel that there are problems with the implementation. You can also contact me if you have suggestions for improvements, or requests for features. One aspect of the implementation that remains untested is the hardware and software to read in the parallel encoder input. I believe it should work, but bugs are most likely in this untested portion. Definitely, contact me if you experience problems trying to use this portion.

I did test much of the implementation with my own small implementation of a physical system. The following is a picture of the test platform I used.

[image: image3.jpg]

I used little DC gear-reduction motors that require a maximum voltage of about 3 volts, from the local hobby shop. These motors have a large amount of backlash slop, so getting this system to work at less than a couple tenths of a degree in analog mode, proves that speed control can help. Without the analog speed control, I had to play with the hysteresis settings in the PC program, quite a bit, to get positioning accuracy on the order of 2 degrees without hunting.

As a simple example of how the DC motor drive from the DAC speed output can be implemented, I am providing the schematic of the circuit I used for these little motors. An op amp is used to scale the voltage output from the DAC to the voltage required by the motor. The darlington transistor in the output provides (more than) the required current for the motor. This is a trivial example, but with high voltage MOSFETs in the output, and a suitable feedback divider, this should be scalable up to a level that can drive larger high-voltage DC motors. Here is the simple circuit.

[image: image4.png]Analog Speed Drive

for testing with +5v*
3 V DC Motors

<

Oto4V LM358N Oto2V
from DAC to Motor
R2
2K >

This shows just one axis (say azimuth). The same circuit is duplicated for the other axis.

Feedback

I hope I have covered most of the information required to understand, build, and use the design for this new version of the F1EHN board. Without the speed control, this should work as expected. Tay has been using an earlier version without problems. The parameters for speed control could cause some confusion and unexpected results but the basics have been tested in my prototype environment. The parallel encoder input is untested so far, so if you try to use it and experience problems, contact me.

Tay and I can probably help with providing programmed chips for those who don't want to invest in a PIC programmer. This will be easy if you don't plan to use speed control. If you want to use speed and my self-calibration routines work ok, all should be well. How this really works remains to be proven.

I can be reached at:
Rex Allers, KK6MK, rexa@dnai.com

I have no connection to US Digital, other than using their products, but documentation and purchase information can be found at http://www.usdigital.com
The free Microchip MPLAB IDE can be downloaded at http://www.microchip.com .

F1EHN software can be downloaded from http://www.nitehawk.com/rasmit/f1ehn.html
2

